Costs, Optimization, Time factors, Firing, Analytical models, Computational modeling,Cloud computing

Fine-Grained Performance and Cost Modeling and Optimization for FaaS Applications

In this study, we therefore fill this gap by proposing formal performance and cost modeling and optimization algorithms, which enable accurate prediction and fine-grained control over the performance and cost of FaaS applications. The proposed model and algorithms provide better predictability and trade-off of performance and cost for FaaS applications, which help developers to make informed decisions on cost reduction, performance improvement, and configuration optimization. We validate the proposed model and algorithms via extensive experiments on AWS. We show that the modeling algorithms can accurately estimate critical metrics, including response time, cost, exit status, and their distributions, regardless of the complexity and scale of the application workflow. Also, the depth-first bottleneck alleviation algorithm for trade-off analysis can effectively solve two optimization problems with fine-grained constraints.